Projet Architecture des ordinateurs

Analyseur Syntaxique de parenthésage
Assembleur x86-64

GHODBANE Rachid
Licence 2 Informatique — Université Jean Monnet 2024 /2025
matricule n°19000721u

Table des matieres

[1 Présentation générale|

1.1 BEntrées et sortiesl
|1'2 E:;!{i !i,gzllgzllll --------------------------------------
(1.3 Algorithme|

2 Programme x86-64|

[3 Explication détaillée du code)

(3.1 Point d’entrée principal (_start)|. oo oo o
[3.2 Chargement de la chaine a analyser{
3.3 Parcours de la chaine|
[3.4 'Test des paires de parentheses|
[3.5 Empilage et dépilage|o
(3.6 Verification finalel oo

4 Avantages du programme]

[Exemple d’utilisation|

1 Présentation générale

Ce document fait 1'objet d’une proposition de solution simple, en langage assembleur x86-64,
permettant l'analyse syntaxique du parenthésage d’une chaine de caracteres (avec paires de
parentheses personnalisables).

1.1 Entrées et sorties

— Entrée : n paires de parentheses et la chaine de caracteres a analyser
— Sortie : 0UT si les parentheses sont valides, NON sinon

1.2 Cas d’erreur

Le programme affiche NON dans les cas suivants :
— Trop de parentheses fermantes
— Trop de parentheses ouvrantes
— Parentheses mal appariées
— Nombre d’arguments insuffisant (moins de 2)

1.3 Algorithme

Algorithme 1 : Vérification de parentheses personnalisées
Données : n paires de parentheses + chaine a analyser
Résultat : 0UI si valide, NON sinon
Initialiser pile vide, compteur < 0;
foreach caractére ¢ dans la chaine do

foreach paire p dans les parenthéses do

if ¢ = parenthése ouvrante de p then
L Empiler ¢, compteur < compteur + 1;

if ¢ = parenthése fermante de p then
if ¢ correspond au sommet de pile then
‘ Dépiler, compteur <+ compteur — 1;
else
L Afficher NON et terminer;

if compteur = 0 then
‘ Afficher 0UT;

else
L Afficher NON;

2 Programme x86-64

.data dec %ri1
msg_usage: .string "2 args\n" movb (%rsp), %hal
msg_non: .string "\nNON\n" cmpb (%ri11), %al
msg_oui: .string "\nOUI\n" jne erreur
pop %rbp
.text dec %ri2
.global _start jmp caractere_suivant
Affiche chaine parcourt_parenthese:
affiche_chaine: cmpb (%ri11), %al
xor Y%rdx, %rdx je empiler_parenthese
mov Y%rsi, %rbx inc Y%riil
boucle_affichage: cmpb (%ri1), %al
movb (%rbx), %al je depiler_parenthese
test %al, %al dec %rii1
jz fin_affichage jmp parenthese_suivant
inc Y%rdx
inc Yrbx parenthese_suivant:
jmp boucle_affichage inc %ri13
fin_affichage: cmp %ri4, %ri3
mov $1, %rax jne charger_parenthese
mov $1, %rdi jmp caractere_suivant
syscall
jmp fin_programme caractere_suivant:
xor %ri13, %ri13
Usage mov $1, %ri3
usage: inc %r8
mov $msg_usage, %rsi jmp parcourt_chaine
call affiche_chaine
jmp fin_programme fin_verif:
cmp $0, %ri2
Verification parentheses je fin_valide
initialisation_des_registres: jmp erreur
xor %rax, %rax
xor Y%rbp, %rbp fin_valide:
xor %ri12, %ri2 mov $msg_oui, Yrsi
push %rbp call affiche_chaine

jmp fin_programme
charger_texte:
xor %r8, %r8 erreur:
mov (%ri15, %ri14, 8), %r8 mov $msg_non, Yrsi
call affiche_chaine
charger_parenthese:

xor %ril, %riil # Main
mov (%ri15, %ri13, 8), %rii _start:
jmp parcourt_chaine mov %rsp, %rilb
movq (%ri5), %rbx
parcourt_chaine: cmp $3, JYrbx
movb (%r8), %al jl usage
test %al, %al movq %rbx, %ril4d
jz fin_verif xor %r9, %r9
jmp parcourt_parenthese xor %r10, %ri10
mov $1, %ri3
empiler_parenthese: call initialisation_des_registres
push (Y%ri1)
inc %ri2 fin_programme:
jmp caractere_suivant mov $60, %rax
xor %rdi, %rdi
depiler_parenthese: syscall

3 Explication détaillée du code

3.1 Point d’entrée principal (__start)

Le programme commence par vérifier le nombre d’arguments puis initialise les registres pour
I’analyse.

_start:
mov %rsp, %rlb
movq (%r15), ’%rbx
cmp $3, %rbx
jl usage

Fonctionnement : Sauvegarde le pointeur de pile dans r15, charge le nombre d’arguments
dans rbx, et vérifie qu’il y a au moins 2 arguments (4 le nom du programme = 3 total).

3.2 Chargement de la chaine a analyser

La chaine a analyser est le dernier argument passé au programme.

charger_texte:
xor %r8, %hr8
mov (%r15, %ri14, 8), %r8

Fonctionnement : Calcule 'adresse r15 + (r14 x 8) pour récupérer I'adresse de la chaine
(dernier argument). r8 contiendra un pointeur vers la chaine pour la parcourir caractére par
caractere.

3.3 Parcours de la chaine

Chaque caractere de la chaine est lu et analysé jusqu’a la fin (caractere nul ’0’).

parcourt_chaine:
movb (%r8), %al
test %al, %al
jz fin_verif
jmp parcourt_parenthese

Fonctionnement : Charge le caractére courant dans al. Si c¢’est ’
0’, termine I'analyse. Sinon, vérifie si ce caractere est une parenthese. Plus tard, inc %r8
avancera d’un caractere.

3.4 Test des paires de parentheses

Pour chaque caractére, le programme teste toutes les paires de parentheses définies.

parcourt_parenthese:
cmpb (%ril), %al
je empiler_parenthese
inc %ri1
cmpb (%r1l), %al
je depiler_parenthese
dec Jri1
jmp parenthese_suivant

Fonctionnement : Compare le caractere avec la parenthese ouvrante de la paire. Si corres-
pondance, empile. Sinon compare avec la fermante (+1 octet). Si correspondance, dépile. Sinon
essaie la paire suivante.

3.5 Empilage et dépilage
Empiler une parenthése ouvrante :

empiler_parenthese:
push (%r11)
inc %ri12
jmp caractere_suivant

Empile la parenthése ouvrante et incrémente le compteur.

Dépiler une parenthése fermante :

depiler_parenthese:
dec Jriil
movb (%rsp), %al
cmpb (%ril), %al
jne erreur
pop %rbp
dec %ri2
jmp caractere_suivant

Vérifie que la parentheése au sommet de la pile correspond a 'ouvrante de la paire. Si oui, dépile
et décrémente le compteur. Sinon, affiche une erreur.

3.6 Vérification finale

A la fin du parcours, le compteur doit étre & 0 (toutes les parentheses fermées).

fin verif:
cmp $0, %ri2
je fin_valide
jmp erreur

Fonctionnement : Si le compteur r12 est a 0, toutes les parentheses ouvrantes ont été correc-
tement fermées — affiche OUI. Sinon, il reste des parenthéses non fermées — affiche NON.

4 Avantages du programme

— Flexibilité
etc.).

— Robustesse : Vérifie le nombre d’arguments et gere les cas d’erreur appropriés.

— Efficacité : Utilise une pile pour un algorithme en temps linéaire O(n).

— Modularité : Code organisé en sous-programmes réutilisables.

: Permet de définir des paires de parentheéses personnalisées (), [1, {3,

5 Exemple d’utilisation

./analyseur "(" "(((blablabla)))"
Analyse : QUI
./analyseur """ "((())"

Analyse : NON

./analyseur "()"
Analyse : NON

./analyseur "[]"
Analyse : OUI

"{}"({ blabla)}"

"ab" "aal[[a[meow meow]b]]bb"

	Présentation générale
	Entrées et sorties
	Cas d'erreur
	Algorithme

	Programme x86-64
	Explication détaillée du code
	Point d'entrée principal (_start)
	Chargement de la chaîne à analyser
	Parcours de la chaîne
	Test des paires de parenthèses
	Empilage et dépilage
	Vérification finale

	Avantages du programme
	Exemple d'utilisation

