
Projet Architecture des ordinateurs

Analyseur Syntaxique de parenthésage
Assembleur x86-64

GHODBANE Rachid
Licence 2 Informatique – Université Jean Monnet 2024/2025

matricule n°19000721u

Table des matières

1 Présentation générale 3
1.1 Entrées et sorties . 3
1.2 Cas d’erreur . 3
1.3 Algorithme . 3

2 Programme x86-64 4

3 Explication détaillée du code 5
3.1 Point d’entrée principal (_start) . 5
3.2 Chargement de la chaîne à analyser . 5
3.3 Parcours de la chaîne . 5
3.4 Test des paires de parenthèses . 6
3.5 Empilage et dépilage . 6
3.6 Vérification finale . 7

4 Avantages du programme 7

5 Exemple d’utilisation 7

2

1 Présentation générale
Ce document fait l’objet d’une proposition de solution simple, en langage assembleur x86-64,
permettant l’analyse syntaxique du parenthésage d’une chaîne de caractères (avec paires de
parenthèses personnalisables).

1.1 Entrées et sorties
— Entrée : n paires de parenthèses et la chaîne de caractères à analyser
— Sortie : OUI si les parenthèses sont valides, NON sinon

1.2 Cas d’erreur
Le programme affiche NON dans les cas suivants :

— Trop de parenthèses fermantes
— Trop de parenthèses ouvrantes
— Parenthèses mal appariées
— Nombre d’arguments insuffisant (moins de 2)

1.3 Algorithme

Algorithme 1 : Vérification de parenthèses personnalisées
Données : n paires de parenthèses + chaîne à analyser
Résultat : OUI si valide, NON sinon
Initialiser pile vide, compteur ← 0;
foreach caractère c dans la chaîne do

foreach paire p dans les parenthèses do
if c = parenthèse ouvrante de p then

Empiler c, compteur ← compteur + 1;
if c = parenthèse fermante de p then

if c correspond au sommet de pile then
Dépiler, compteur ← compteur − 1;

else
Afficher NON et terminer;

if compteur = 0 then
Afficher OUI;

else
Afficher NON;

3

2 Programme x86-64

.data
msg_usage: .string "2 args\n"
msg_non: .string "\nNON\n"
msg_oui: .string "\nOUI\n"

.text

.global _start

Affiche chaine
affiche_chaine:

xor %rdx, %rdx
mov %rsi, %rbx

boucle_affichage:
movb (%rbx), %al
test %al, %al
jz fin_affichage
inc %rdx
inc %rbx
jmp boucle_affichage

fin_affichage:
mov $1, %rax
mov $1, %rdi
syscall
jmp fin_programme

Usage
usage:

mov $msg_usage, %rsi
call affiche_chaine
jmp fin_programme

Verification parentheses
initialisation_des_registres:

xor %rax, %rax
xor %rbp, %rbp
xor %r12, %r12
push %rbp

charger_texte:
xor %r8, %r8
mov (%r15, %r14, 8), %r8

charger_parenthese:
xor %r11, %r11
mov (%r15, %r13, 8), %r11
jmp parcourt_chaine

parcourt_chaine:
movb (%r8), %al
test %al, %al
jz fin_verif
jmp parcourt_parenthese

empiler_parenthese:
push (%r11)
inc %r12
jmp caractere_suivant

depiler_parenthese:

dec %r11
movb (%rsp), %al
cmpb (%r11), %al
jne erreur
pop %rbp
dec %r12
jmp caractere_suivant

parcourt_parenthese:
cmpb (%r11), %al
je empiler_parenthese
inc %r11
cmpb (%r11), %al
je depiler_parenthese
dec %r11
jmp parenthese_suivant

parenthese_suivant:
inc %r13
cmp %r14, %r13
jne charger_parenthese
jmp caractere_suivant

caractere_suivant:
xor %r13, %r13
mov $1, %r13
inc %r8
jmp parcourt_chaine

fin_verif:
cmp $0, %r12
je fin_valide
jmp erreur

fin_valide:
mov $msg_oui, %rsi
call affiche_chaine
jmp fin_programme

erreur:
mov $msg_non, %rsi
call affiche_chaine

Main
_start:

mov %rsp, %r15
movq (%r15), %rbx
cmp $3, %rbx
jl usage
movq %rbx, %r14
xor %r9, %r9
xor %r10, %r10
mov $1, %r13
call initialisation_des_registres

fin_programme:
mov $60, %rax
xor %rdi, %rdi
syscall

4

3 Explication détaillée du code

3.1 Point d’entrée principal (_start)

Le programme commence par vérifier le nombre d’arguments puis initialise les registres pour
l’analyse.

_start:
mov %rsp, %r15
movq (%r15), %rbx
cmp $3, %rbx
jl usage

Fonctionnement : Sauvegarde le pointeur de pile dans r15, charge le nombre d’arguments
dans rbx, et vérifie qu’il y a au moins 2 arguments (+ le nom du programme = 3 total).

3.2 Chargement de la chaîne à analyser

La chaîne à analyser est le dernier argument passé au programme.

charger_texte:
xor %r8, %r8
mov (%r15, %r14, 8), %r8

Fonctionnement : Calcule l’adresse r15 + (r14 × 8) pour récupérer l’adresse de la chaîne
(dernier argument). r8 contiendra un pointeur vers la chaîne pour la parcourir caractère par
caractère.

3.3 Parcours de la chaîne

Chaque caractère de la chaîne est lu et analysé jusqu’à la fin (caractère nul ’0’).

parcourt_chaine:
movb (%r8), %al
test %al, %al
jz fin_verif
jmp parcourt_parenthese

Fonctionnement : Charge le caractère courant dans al. Si c’est ’
0’, termine l’analyse. Sinon, vérifie si ce caractère est une parenthèse. Plus tard, inc %r8
avancera d’un caractère.

5

3.4 Test des paires de parenthèses

Pour chaque caractère, le programme teste toutes les paires de parenthèses définies.

parcourt_parenthese:
cmpb (%r11), %al
je empiler_parenthese
inc %r11
cmpb (%r11), %al
je depiler_parenthese
dec %r11
jmp parenthese_suivant

Fonctionnement : Compare le caractère avec la parenthèse ouvrante de la paire. Si corres-
pondance, empile. Sinon compare avec la fermante (+1 octet). Si correspondance, dépile. Sinon
essaie la paire suivante.

3.5 Empilage et dépilage

Empiler une parenthèse ouvrante :

empiler_parenthese:
push (%r11)
inc %r12
jmp caractere_suivant

Empile la parenthèse ouvrante et incrémente le compteur.

Dépiler une parenthèse fermante :

depiler_parenthese:
dec %r11
movb (%rsp), %al
cmpb (%r11), %al
jne erreur
pop %rbp
dec %r12
jmp caractere_suivant

Vérifie que la parenthèse au sommet de la pile correspond à l’ouvrante de la paire. Si oui, dépile
et décrémente le compteur. Sinon, affiche une erreur.

6

3.6 Vérification finale

À la fin du parcours, le compteur doit être à 0 (toutes les parenthèses fermées).

fin_verif:
cmp $0, %r12
je fin_valide
jmp erreur

Fonctionnement : Si le compteur r12 est à 0, toutes les parenthèses ouvrantes ont été correc-
tement fermées → affiche OUI. Sinon, il reste des parenthèses non fermées → affiche NON.

4 Avantages du programme

— Flexibilité : Permet de définir des paires de parenthèses personnalisées ((), [], {},
etc.).

— Robustesse : Vérifie le nombre d’arguments et gère les cas d’erreur appropriés.
— Efficacité : Utilise une pile pour un algorithme en temps linéaire O(n).
— Modularité : Code organisé en sous-programmes réutilisables.

5 Exemple d’utilisation

./analyseur "()" "(((blablabla)))"
Analyse : OUI

./analyseur "()" "((())"
Analyse : NON

./analyseur "()" "{}"({ blabla)}"
Analyse : NON

./analyseur "[]" "ab" "aa[[a[meow meow]b]]bb"
Analyse : OUI

7

	Présentation générale
	Entrées et sorties
	Cas d'erreur
	Algorithme

	Programme x86-64
	Explication détaillée du code
	Point d'entrée principal (_start)
	Chargement de la chaîne à analyser
	Parcours de la chaîne
	Test des paires de parenthèses
	Empilage et dépilage
	Vérification finale

	Avantages du programme
	Exemple d'utilisation

